

АО «Научно-исследовательский институт телевидения»

Адаптивные системы подводного видения

Докладчик: Проконич Андрей

Области применения подводных аппаратов

Отечественные кампании производящие подводные аппараты

AO «СПМБМ «Малахит»	ELMICS	
ROVBUILDER	Marine Geo Service	
Дальневосточное отделение РАН	Гидроприбор	
АО "Тетис Про"	ДВФУ	
АО ГНПП «Регион»	ООО Индэл-Партнер	
ООО «Подводная робототехника»	ИМПТ ДВО РАН	
AO «НПП ПТ «Океанос»	ИПУ РАН (Институт проблем управления РАН)	
AO «ЦКБ МТ «Рубин»	МГТУ им. Баумана	
AO «НПО «Аврора»	ООО «СМТ» (Современные морские технологии)	
АО НПП «Авиационная и морская электроника»	ООО "Центр робототехники"	
The "Whale"	АО «Шельф»	

Характеристики ТВ-камер аппаратов

Модель	Скорость	Модель	Разрешение	Матрица	Объектив	Угол
	хода	камеры	камер	камер		обзора
TurtleROV/ TurtleROV2 1,5 m/c	1,5 м/сек	MTV33SR88H, MultiVision	540 твл	1/3" CCD Interline Transfer		
		DS-M132, Dals Semi	420 твл	1/3" SONY Super HAD II	3.6 мм	
РБ-50	0,5 м/сек	Gopro HERO3+ Black Edition	4096x2160		f 2,8 mm	170 º
РБ-100D	1,0 м/сек	USB HD Sony	1280x720		f 2,8 mm	100 º
РБ-600D	2,0 м/сек	Sony PJ 260	1920x1080			90 º
MCC-1000	1,3 м/сек	Full HD	1920x1080	1/2.8" 2.4 Mpx CMOS		
			1920x1080	1/2.8" 2.4 Mpx CMOS		
			1920x1080	1/2.7" 2.07 Mpx CMOS		
ГНОМ Бэби	1,5 м/сек	Sony Super HAD 2 CCD	700 Твл	1/3" Interline Transfer CCD		
гном про			FullHD		3.6 mm/F2.0	66⁰
СуперГНОМ		Sony Super HAD 2 CCD	700 Твл	1/3" Interline Transfer CCD		

Некоторые производители используют аналоговые телекамеры, для этих случаев разрешающая способность рассчитывается в телевизионных линиях (ТВЛ)

Примерное сравнение разрешения аналоговых и цифровых камер					
ТВЛ	Пикселы	Мегапикселы			
420	720x576	0,36			
480	800x600	0,5			
560	933x700	0,65			
600	1024x756	0,75			
800	1080x960	1,23			

Описание проблемы

- Выбор фотоприемников установленных в ТВ-камерах.
- Выбор осветителей.
- Расположение осветителей и ТВ-камер на подводных аппаратах.
- Отсутствует возможность подстройки параметров ТВ-камеры и осветителя в зависимости от параметров аппарата и характеристик среды.

Предложенное решение

- Разработка алгоритмов подстройки параметров осветителя и ТВ-камеры в зависимости от скорости подводного аппарата и дальности наблюдения.
- Автоматизация алгоритмов.

Адаптация под скорость аппарата и дальность наблюдения

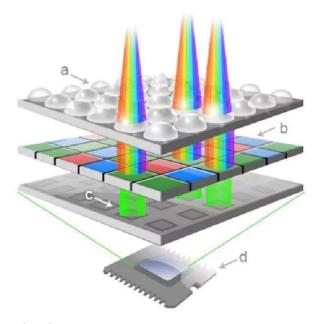
ТВ-камера:

- Автоматизированный подбор количества кадров в секунду.
- Оптимизация режима работы ТВ-камеры под дальность видимости.

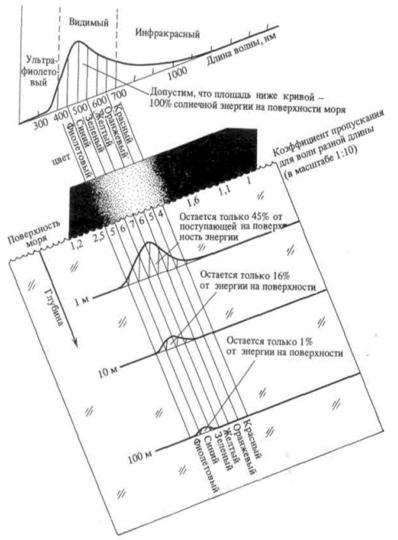
Осветитель:

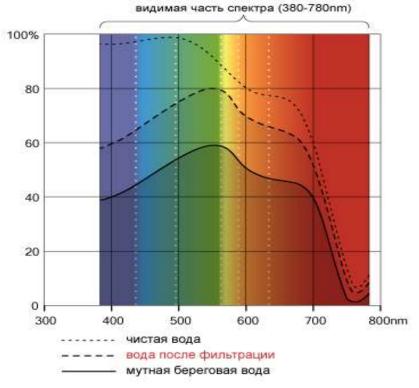
- Согласование конструкции и расположения с ТВ-камерой.
- Согласование характеристик осветителя с ТВ-камерой.

Выводы


- Повышение качества изображения
- Эффективное использование хранилища видеоинформации
- Уменьшение энергопотребления
- Увеличение продолжительности работоспособности

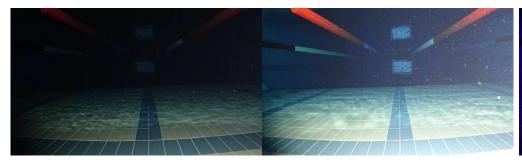
Цветное телевидение в подводной среде

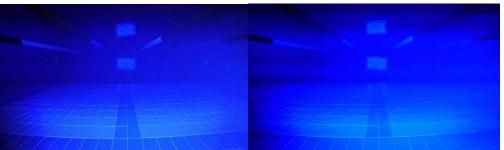

Фильтр Байера состоит из 25 % красных, 25 % синих и 50 % зелёных элементов. Из-за этого теряется от 20% до 50% светового потока.


Чем больше отраженного светового потока падает на пиксель фотоприемника тем лучше будет качество изображения.

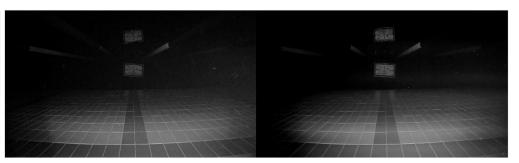
- а) Фокусирующие линзы
- b) Светофильтры
- с) Фотоприемная поверхность
- d) Общий вид фотоприемника

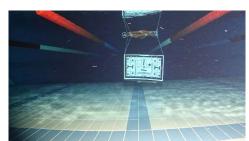
Рассеивание света водной средой

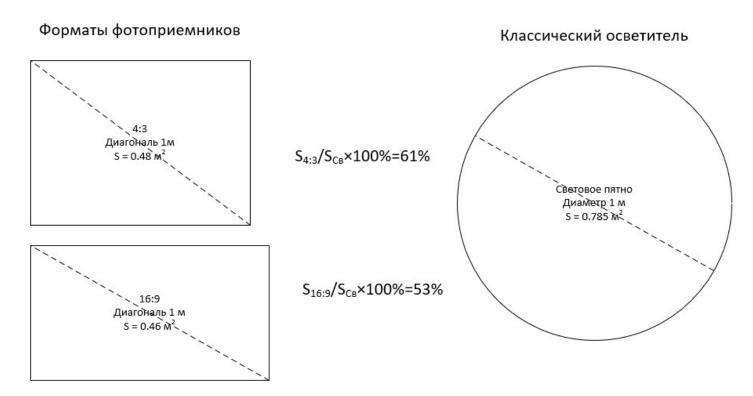

Наиболее эффективное излучение с длинной волны лежащей в пределах 0,52 – 0,54 нм


Влияние типа осветителя на изображения, дистанция 10 м

Классический осветитель


Опытный образец


Мин.освещ. Макс.освещ. Мин.освещ. Макс.освещ.



Согласование осветителей и ТВ-камер

В процентном соотношении получается что при использовании классических осветителей почти половина освещаемой площади не используется.

Осветитель ОП-1

